首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2391篇
  免费   193篇
  国内免费   1篇
  2023年   7篇
  2022年   4篇
  2021年   45篇
  2020年   21篇
  2019年   21篇
  2018年   41篇
  2017年   30篇
  2016年   75篇
  2015年   125篇
  2014年   130篇
  2013年   169篇
  2012年   224篇
  2011年   219篇
  2010年   139篇
  2009年   121篇
  2008年   153篇
  2007年   163篇
  2006年   126篇
  2005年   130篇
  2004年   122篇
  2003年   108篇
  2002年   103篇
  2001年   24篇
  2000年   14篇
  1999年   13篇
  1998年   27篇
  1997年   22篇
  1996年   15篇
  1995年   22篇
  1994年   14篇
  1993年   12篇
  1992年   12篇
  1991年   11篇
  1990年   6篇
  1989年   7篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   9篇
  1982年   10篇
  1981年   3篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1976年   9篇
  1975年   6篇
  1974年   4篇
  1971年   4篇
排序方式: 共有2585条查询结果,搜索用时 15 毫秒
11.
From the data presented in this report, the human LDHC gene locus is assigned to chromosome 11. Three genes determine lactate dehydrogenase (LDH) in man. LDHA and LDHB are expressed in most somatic tissues, while expression of LDHC is confined to the germinal epithelium of the testes. A human LDHC cDNA clone was used as a probe to analyze genomic DNA from rodent/human somatic cell hybrids. The pattern of bands with LDHC hybridization is easily distinguished from the pattern detected by LDHA hybridization, and the LDHC probe is specific for testis mRNA. The structural gene LDHA has been previously assigned to human chromosome 11, while LDHB maps to chromosome 12. Studies of pigeon LDH have shown tight linkage between LDHB and LDHC leading to the expectation that these genes would be syntenic in man. However, the data presented in this paper show conclusively that LDHC is syntenic with LDHA on human chromosome 11. The terminology for LDH genes LDHA, LDHB, and LDHC is equivalent to Ldhl, Ldh2, and Ldh3, respectively.  相似文献   
12.
13.
Regulation and functional significance of phospholipase D in myocardium   总被引:3,自引:0,他引:3  
There is now clear evidence that receptor-dependent phospholipase D is present in myocardium. This novel signal transduction pathway provides an alternative source of 1,2-diacylglycerol, which activates isoforms of protein kinase C. The members of the protein kinase C family respond differently to various combinations of Ca2+, phosphatidylserine, molecular species of 1,2-diacylglycerol and other membrane phospholipid metabolites including free fatty acids. Protein kinase C isozymes are responsible for phosphorylation of specific cardiac substrate proteins that may be involved in regulation of cardiac contractility, hypertrophic growth, gene expression, ischemic preconditioning and electrophysiological changes. The initial product of phospholipase D, phosphatidic acid, may also have a second messenger role. As in other tissues, the question how the activity of phospholipase D is controlled by agonists in myocardium is controversial. Agonists, such as endothelin-1, atrial natriuretic factor and angiotensin 11 that are shown to activate phospholipase D, also potently stimulate phospholipase C- in myocardium. PMA stimulation of protein kinase C inactivates phospholipase C and strongly activates phospholipase D and this is probably a major mechanism by which agonists that promote phosphatidyl-4,5-bisphosphate hydrolysis secondary activate phosphatidylcholine-hydrolysis. On the other hand, one group has postulated that formation of phosphatidic acid secondary activates phosphatidyl-4,5-bisphosphate hydrolysis in cardiomyocytes. Whether GTP-binding proteins directly control phospholipase D is not clearly established in myocardium. Phospholipase D activation may also be mediated by an increase in cytosolic free Ca2+ or by tyrosine-phosphorylation.  相似文献   
14.
Efficient production of ATP and NADPH by the light reactions of oxygen-evolving photosynthesis demands continuous adjustment of transfer of absorbed light energy from antenna complexes to Photosystem I (PS I) and II (PS II) reaction center complexes in response to changes in light quality. Treatment of intact cyanobacterial cells with N-ethylmaleimide appears to disrupt energy transfer from phycobilisomes to Photosystem I (PS I). Energy transfer from phycobilisomes to Photosystem II (PS II) is unperturbed. Spectroscopic analysis indicates that the individual complexes (phycobilisomes, PS II, PS I) remain functionally intact under these conditions. The results are consistent with the presence of connections between phycobiliproteins and both PS II and PS I, but they do not support the existence of direct contacts between the two photosystems.Abbreviations Chl chlorophyll - EPR electron paramagnetic resonance - NEM N-ethylmaleimide - PBS phycobilisome - PS photosystem  相似文献   
15.
The radiosensitivity of spermatogonial stem cells of C3H/HeH × 101/H F1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIIIirr, during quiescence, the spermatogonial stem cells were most radiosensitive with a D0 of 1.4 Gy. In stages XIirr−Virr, when the cells were proliferatively active, the D0 was about 2.6 Gy. Based on the D0 values for sensitive and resistant spermatogonia and on the D0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing.

When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y = eτD, with τ = 1 for the sensitive and τ = 0.1 for the resistant spermatogonial stem cells, with a maximal eτD of 100.  相似文献   

16.
The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50/mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.  相似文献   
17.
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50/mL), more than 4–100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15–30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.  相似文献   
18.
High-resolution nuclear magnetic resonance (NMR) spectroscopy is a structural technique that is finding increasing use in the study of antibody–antigen interactions. In this review we describe how the dynamic structural parameters obtained from NMR spectroscopy can further our understanding of B-cell epitopes and their function. Specific applications of NMR spectroscopy to examine the residues on peptides and proteins that contact the antibody combining site are also described. These include “footprinting” techniques using H–D exchange–COSY NMR spectroscopy, which are particularly useful for epitope mapping of protein antigens. For smaller systems, such as Fab–or Fv–peptide complexes, nuclear magnetization transfer difference NMR spectroscopy, transferred nuclear Overhauser effect spectroscopy, double-quantum-filtered NOE spectroscopy, and isotope editing techniques have been applied. The interpretation and limitations of the data obtained from these procedures and anticipated improvements in these applications in the future are discussed.  相似文献   
19.
Abstract: Microtubule-associated protein-2 (MAP-2) functions to maintain neuronal morphology by promoting the assembly of microtubules. MAP-2c is an alternately spliced form of MAP-2, containing the first 151 amino acids of high-molecular-weight (HMW) MAP-2 joined to the last 321 amino acids, eliminating 1,352 amino acids specific to HMW MAP-2. A polyclonal antibody generated to the splice site of human MAP-2c was used to determine its cellular localization. The MAP-2c antiserum was depleted of any HMW MAP-2 reactivity by absorption with HMW MAP-2 fusion protein. Western blot analysis of human fetal spinal cord homogenates demonstrated that the antibody is specific for human MAP-2c. MAP-2c immunoreactivity was found in the perinuclear cytoplasm and processes of anterior motor neurons and large processes of the posterior column in sections from 22–24-week human fetal spinal cord. Double-label confocal microscopy was performed using the MAP-2c polyclonal antibody and either a HMW MAP-2 or a neurofilament protein (highly phosphorylated 160- and 200-kDa protein) monoclonal antibody to identify these processes as dendrites or axons, respectively. HMW MAP-2 and MAP-2c colocalized in cell bodies and dendrites of anterior motor neurons, demonstrating for the first time the presence of native MAP-2c within dendrites. In addition, immunoelectron microscopy showed MAP-2c associated with microtubules in dendrites of motor neurons. MAP-2c and the neurofilament proteins were found in axons of the dorsal and ventral roots. The presence of MAP-2c within axons and dendrites suggests that MAP-2c contributes to neuronal plasticity during human fetal development.  相似文献   
20.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号